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Introduktion til workshoppen

Velkommen til workshoppen i sigma-matematik. Vi vil se p̊a 3 forskellige m̊ader
bogstavet sigma bruges i matematik: sumnotation, parametrisering af flader og

sigma-algebraer.
Workshoppen forudsætter grundlæggende viden om mængdelære. Der er dog en

refresher i starten af dette dokument i tilfælde af at man har glemt noget.
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1 Mængdelære

Det følgende afsnit vil ikke blive gennemg̊aet, men er tænkt som opslagsværk hvis man
vil sl̊a noget op. De begreber indenfor mængdelæren som det ikke forventes at I har
set før vil blive introduceret lige før vi skal bruge dem. Dette afsnit er ikke tænkt som
en første introduktion til mængdelære, men snare en genopfriskning.

Definition 1.1. En mængde er en samling af elementer. Vi kan skrive mængder p̊a
forment {elementer} og {elementer | betingelser}

Definition 1.2. Lad A være en mængde og x et element. Hvis x er et element i A
skriver vi x ∈ A.

Definition 1.3. Den tomme mængde (skrevet ∅) er mængden givet ved {}

Definition 1.4. Lad A og B være mængder. Da er foreningsmængden givet ved
A ∪B = {x | x ∈ A eller x ∈ B} og fællesmængden ved A ∩B = {x | x ∈ A,x ∈ B}

Definition 1.5. Lad A og B være mængder. Hvis alle elenter i A ogs̊a er i B siger vi
at A er en delmængde af B og vi skriver A ⊆ B.

Definition 1.6. En funktion f : A → B tilordner hvert element i A (definitionsmæng-
den) til et element i B (værdimængden).

Definition 1.7. En funktion f : A → B er bijektiv hvis alle elementer i B rammes af
præcis et element fra A.

Definition 1.8. Lad f : A → B og g : B → C være funktioner. Da er g ◦ f : A → C
givet ved g ◦ f(x) = g(f(x))

Definition 1.9. Lad f : A → B være en funktion. An funktion g : B → A er invers
til f hvis f ◦ g(y) = y og g ◦ f(x) = x. I det tilfælde kan vi skrive g som f−1.
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2 Sumnotation

Det første sigma vi vil introducere er
∑

som bruges til at notere summer.

Definition 2.1. Lad ai være tal for alle m ≤ i ≤ n, hvor m og n er naturlige tal eller
0. Da definerer vi

m∑
i=n

= an + an+1 + · · ·+ am−1 + am

Eksempel 2.2. Vi kan regne

5∑
i=1

n = 1 + 2 + 3 + 4 + 5 = 15

og
3∑

i=1

i2 = 12 + 22 + 32 = 1 + 4 + 9 = 14

2.1 Induktion

I nogle tilfælde findes der formler til at regne summer med mange led ud. Vi vil her vise
nogen af dem ved at bruge en metode indenfor matematikken der hedder induktion.

Proposition 2.3. Lad n være et naturligt tal. Da gælder

n∑
i=1

i =
n(n+ 1)
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Bevis. Induktionsstart: Lad n = 1. Vi regner begge sider af lighedstegnet og f̊ar

1∑
i=1

= 1 = 1

S̊a propositionen er sand hvis n = 1.
Induktionsantagelse: Antag at propositionen er sand for et m ∈ N. Alts̊a

m∑
i=1

i =
m(m+ 1)
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Induktionsskridt: Lad n = m+ 1. Vi regner

m+1∑
i=0

i =

m∑
i=0

i+m+1 =
m(m+ 1)

2
+m+1 =

m(m+ 1) + 2(m+ 1)

2
=

(m+ 1)(m+ 2)

2

Dette viser per induktion at propositionen er sand. ■

2.2 Opgaver

Opgave 2.1:
Udregn

1)
6∑

i=1

2i
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2)
3∑

i=1

1

i

3)
3∑

i=1

2i

Opgave 2.2:

1)Udregn
5∑

i=1

(2i+1 − 2i)

2)Gæt p̊a hvad
n∑

i=1

(2i+1 − 2i)

giver

3)Gæt p̊a hvad
n∑

i=m

(2i+1 − 2i)

giver

Opgave 2.3:

1)Udregn 2 + 4 + · · ·+ 16

2)Udregn
8∑

i=1

2i

3)Udregn
4∑

i=1

2i

Opgave 2.4:
Vis de følgende formler ved induktion

1)
n∑

i=1

2i− 1 = n2

2)
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
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3 Flader i rummet

Definition 3.1. Lad f : A → B være en funktion. Lad S ⊆ A. Vi definerer billedet
af S under f som

f(S) = {f(s) | s ∈ S}

Eksempel 3.2. Lad f : R → R være givet ved f(x) = x2. Da er f([1,2]) = [1,4].

Definition 3.3. Lad A og B være mængder. Vi definerer

A×B = {(a,b) | a ∈ A, b ∈ B}

Vi definerer A2 = A×A og A3 = A×A×A.

Definition 3.4. En parametriseret kontinuert flade i R3 er en kontinuert funktion
σ : U → R3 hvor U ⊆ R2 er en åben ikke-tom mængde.

Bemærkning 3.5. Her p̊a workshoppen vil vi ikke g̊a ind i hvad det vil sige at en
mængde er åben. Alle eksempler og opgaver vil tage udgangspunkt i åbne mængder.

Eksempel 3.6. Vi vil finde en parametrisering af fladen givet af mængden {(x,y,z) ∈
R3 | x2+ z2 = 1}. Vi definerer funktionen σ : R2 → R3 ved σ(u,v) = (sin(u),v, cos(u)).
Vi finder billedet af R2 under σ

σ(R2) = {(x,y,z) ∈ R3 | x2 + z2 = 1}

som var den flade vi ønskede. Det bør nævnes (og det kommer vi ogs̊a til) at σ ikke er
den eneste parametrisering af fladen.

Definition 3.7. Lad U,W være åbne mængder. En diffeomorfi er en glat1 bijektiv
funktion med en glat invers.

Definition 3.8. Lad σ : U → R3 være en parametriseret flade og lad φ : W → U
være en diffeomorphi. Da er τ = σ ◦ φ : W → R3 en reparametrisering af σ.

Eksempel 3.9. Betragt fladen parametriseret ved σ : R2 → R3 givet ved σ(u,v) =
(sin(u),v, cos(u)). Vi vil vise at den ogs̊a kan parametriseres ved τ : R2 → R3 givet
ved τ(u,v) = (sin(u),2v, cos(u)). Vi ser at vi har funktionen φ : R2 → R2 givet ved
φ(u,v) = (u,2v). Den opfylder τ = σ ◦ φ.

Definition 3.10. Lad I ⊆ R være et åbent interval. En parametriseret kontinuert
kurve er en kontinuert funktion γ : I → Rn.

Definition 3.11. Lad σ : U → R3 være en parametriseret flade, og γ : I → R3 være
en parametriseret kurve. Vi siger at γ ligger p̊a σ hvis der findes en funktion µ : I → U
s̊aledes at γ = σ ◦ µ.

Eksempel 3.12. Vi vil vise at kurven γ : R → R3 givet ved γ(t) = (sin(t),t, cos(t))
ligger p̊a fladen σ : R → R3 givet ved σ(u,v) = (sin(u),v, cos(u)). Vi ser at vi har
funktionen µ : R → R2 givet ved µ(t) = (t,t). Den opfylder γ = σ ◦ µ som ønsket.

1En glat funktion er en særlig pæn kontinuert funktion. Her p̊a workshoppen vil alle funktioner
være glatte
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3.1 Opgaver

Opgave 3.1:
Skitser of find parametriseringer for de følgende flader

1){(x,y,z) ∈ R3 | x = y}
2){(x,y,z) ∈ R3 | z = x2 + y2}
3){(x,y,z) ∈ R3 | z = sin(x)}

Opgave 3.2:
Beskriv fladerne paramtriseret af de følgende parametriseringer

1)σ : R2 → R3 givet ved σ(u,v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) (Hint: brug
sin2(θ) + cos2(θ) = 1)

2)σ : (0,π)2 :→ R3 givet ved σ(u,v) = (sin(u), cos(u),v)

3)σ : R2 → R3 givet ved σ(u,v) = (v sin(u),v,v cos(u))

Opgave 3.3:
Hvilken af de nedenst̊aende parametriseringer parametriserer ikke den samme flade

som de 2 andre?

1)σ : R2 → R3 givet ved σ(u,v) = (u,v,uv)

2)σ : (0,2π)× R → R3 givet ved σ(u,v) = (sin(u),v, sin(u)v)

3)σ : R2 → R3 givet ved σ(u,v) = (v,u,vu)

Opgave 3.4:
Lad σ,σ′ og τ være parametriseringer af flader. Vis at hvis σ′ er en reparametrisering
af σ og τ er en reparametrisering af σ′, s̊a τ en reparametrisering af σ.

Opgave 3.5:
Vi betrager fladen parametriseret ved σ : R2 → R3 givet ved σ(u,v) = (sin(u) cos(v), sin(u) sin(v), cos(u)).
Vis at de nedenst̊aende kurver ligger p̊a σ

1)γ : R → R3 givet ved γ(t) = (sin(t),0, cos(t))

2)γ : R → R3 givet ved γ(t) = (cos(t), sin(t),0)

3)γ : R → R3 givet ved γ(t) = (sin(t) cos(t), sin2(t), cos(t))
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4 Sigma-algebraer

Vi starter med nogle begreber fra mængdelære som vi ikke er stødt p̊a endnu

Definition 4.1. Lad A og B være mængder. Vi definerer deres differens som A \B =
{x ∈ A | x /∈ B}

Lad X være en universalmængde og A en mængde (da X er en universalmængde
antager vi A ⊆ X), vi definerer komplementet af A i X som A∁ = X \A.

Eksempel 4.2. Lad X = {1,2,3,4} og A = {2,3}. Da er A∁ = X \A = {1,4}.

Definition 4.3. Lad A1,A2, . . . være mængder. Da er

∞⋃
i=1

Ai = A1 ∪A2 ∪ . . .

og
∞⋂
i=1

Ai = A1 ∩A2 ∩ . . .

Definition 4.4. Lad X være en mængde. En sigma-algebra A er en mængde hvor der
gælder at

1. X,∅ ∈ A

2. Hvis A ∈ X s̊a A∁ ∈ A

3. Hvis vi har mængder A1,A2, . . . hvor Ai ∈ A for alle i ∈ N, s̊a
⋃∞

i=1 Ai ∈ A

En mængde der er indeholdt i en sigma-algebra kaldes m̊alelig
En tuppel (X,A) hvor X er en mængde og A er en sigma algebra p̊a X, kaldes et

m̊albart rum.

Eksempel 4.5. Her er nogle eksempler p̊a sigma-algebraer

� Den trivielle sigma-algebra over en mængde X er {∅,X}

� Den totale sigma-algebra over en mængde X er P(X) = {A | A ⊆ X}

� Lad A ⊆ X. Da er {∅,A,A∁,X} en sigma-algebra

Proposition 4.6. Lad (X,A) være et m̊albart rum. Lad A og B samt A1,A2, . . . være
m̊alelige mængder. Da er følgende mængder m̊alelige

1. A ∪B

2.
⋂∞

i=1 Ai

3. A ∩B

4. A \B

Bevis. Vi starter med nummer 1. Lad B1 = A, B2 = B og Bi = ∅ for alle i ≥ 3.
Definitionen af en sigma-algebra giver os at

A ∪B =

∞⋃
i=1

Bi ∈ A
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Nu til nummer 2. Definer Bi = A∁
i Da giver definitionen af en sigma-algebra at

∞⋃
i=1

Bi =

∞⋃
i=1

A∁
i ∈ A

Vi tager komplementet af dette og f̊ar det ønskede resultat.
Nummer 3 og 4 overlades til læseren. ■

Definition 4.7. Lad X være en mængde og A ⊆ P(X). Da kaldes σ(A) sigma-
algebraen frembragt af A og defineres ved

σ(A) =
⋂

A⊆A

A

hvor A er en sigma-algebra.

Definitionen ovenfor kan godt være svær at forst̊a. Den skal forst̊aes som at σ(A)
er den mindste sigma-algebra der indeholder A.

Eksempel 4.8. Vi vil kigge p̊a en meget berømt sigma-algebra der hedder Borel-
sigma-algebraen. Vi vil kigge p̊a Borel-sigma-algebraen over R. Den noteres ofte B(R).
Vi lader A = {(a,b) | a,b ∈ R, a ≤ b}. Da er B(R) = σ(A).

Vi vil vise at [2,3) ∈ B(R). Vi har at (1,3),(1,2) ∈ A og vi kan skrive

[2,3) = (1,3) \ (1,2)

s̊a per proposition 4.6 er [2,3) ∈ B(R)

4.1 Opgaver

Opgave 4.1: Spor-sigma-algebraen
Lad (X,A) være et m̊albart rum og A ⊆ X en mængde. Vi definerer

B = {A ∩B | B ∈ A}

Vis at B er en sigma-algebra over A.

Opgave 4.2:
Lad X være en mængde. Hvad kan du sige om B hvis {∅,B,X} er en sigma-algebra?

Opgave 4.3:
Færdiggør beviset for Teorem 4.6.

Opgave 4.4:
Hvilke af nedenst̊aende mængder er Borel?

1)(1,2)

2){1}
3)N
4)[1,2]

5)(−∞,1)

6)Z
7)Q

Opgave 4.5:
Lad B = {[a,b] | a,b ∈ R, a ≤ b}. Vis at σ(B) = B(R)
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